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ABSTRACT

In a space weather context, the most geoeffective coronal mass ejections (CMEs) are fast CMEs from Earth-
facing solar active regions. These CMEs are difficult to characterize in coronagraph data due to their high
speed (fewer observations), faintness, Earthward orientation (halo CMEs), and disruptions from associated
high-energy particle storms. Any diagnostic aiding in early CME speed identification is valuable. This study
investigates whether the 3D speeds of 37 CMEs are correlated with the critical heights of their source regions, to
test the hypothesis that if the critical height is located at a higher altitude in the corona, the weaker magnetic
field environment will enable a faster CME to be produced. Critical heights near CME onset are calculated by
identifying polarity inversion lines (PIL) in magnetogram data using automated and manual methods. 3D speeds
are determined by fitting a Graduated Cylindrical Shell (GCS) model to multi-viewpoint coronagraph images.
For the automated method, we find a high correlation of 71% ± 8% between CME speed and critical height,
dropping to 48% ± 12% when using CME plane-of-sky speeds, on which most previous similar studies are based.
An attempt to improve the critical height diagnostic through manual PIL selection yields a lower correlation of
58% ± 13%. The higher correlation from the automated method suggests that encompassing the full PIL structure
is a better measure of the magnetic conditions that influence CME dynamics. Our results highlight the potential
for critical height as a continuously computable diagnostic for forecasting the 3D speeds of Earth-directed CMEs.

Keywords: Corona (1483) – Coronal mass ejections (310) – Active regions (1974) – Coronal transients (312) –
Coronographic imaging (313)

1. INTRODUCTION

Solar phenomena, particularly coronal mass ejections
(CMEs; Hundhausen 1999; Forbes 2000), play a crucial role in
shaping space weather, impacting both terrestrial and space-
based technologies (Schwenn 2006; Pulkkinen 2007). Al-
though CMEs typically take 1-3 days to reach Earth, cur-
rent forecasting capabilities are limited to post-eruption pe-
riods. This limitation is especially pronounced for CMEs,
whose Earth-directed trajectory makes their early detection
and speed estimation challenging in near-real-time corona-
graph data (Gopalswamy et al. 2007). Given that fast-moving
CMEs can reach Earth in less than a day, understanding pre-
eruptive phases and identifying predictive parameters in ac-
tive regions is crucial for improving lead times and advancing
space weather forecasting (Gopalswamy et al. 2007; Alexakis
& Mavromichalaki 2019; Taylor 2020; Zhang et al. 2021;
Besliu-Ionescu & Mierla 2021).

CMEs result from the sudden destabilization of a coronal
magnetic field region, following an extended phase of mag-
netic stress accumulation and free magnetic energy build-up
within active regions (Forbes et al. 2006; Schmieder et al.
2015; Chen 2017; Majumdar et al. 2022). This energy build-
up culminates in the eruption phase, where, under conditions
of insufficient downward magnetic tension from overlying
fields, plasma and magnetic fields are expelled into interplan-
etary space. Observations from solar telescopes equipped
with remote-sensing instruments, such as coronagraphs, Ex-
treme ultraviolet (EUV) and X-ray imagers, spectrographs,
and magnetographs, provide data across these phases, while
theoretical models based on magnetohydrodynamics (MHD)
offer insight into the complex physics governing CME initia-
tion and evolution.

The current understanding of CME initiation mechanisms
divides them into resistive (e.g., magnetic reconnection) and
ideal MHD instabilities, such as the torus instability (Kliem &
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Török 2006). Torus instability occurs when a toroidal-shaped
magnetic structure, such as a flux rope, experiences an out-
ward hoop force that overcomes the inward magnetic tension
from the overlying field (Deng & Welsch 2017). Following
this understanding of CME initiation mechanisms, the con-
cept of the magnetic decay index (Kliem & Török 2006), n,
emerges as a key theoretical tool in the study of CME dynam-
ics. It is a measure of quantifying how the strength of the
poloidal component of an external magnetic field, Bext,p (the
component that contributes to the tension force), changes with
the radial distance, R, measured from the photosphere. It is
defined as:

n = −
d ln Bext,p

d ln R
(1)

A structure becomes susceptible to rapid expansion and may
erupt as a CME if it exists within an external magnetic field
where the decay index exceeds a critical threshold, nc = 1.5, a
principle initially established by Bateman (1978) and further
explored by Kliem & Török (2006) in the context of CME
dynamics. This critical value nc for torus instability can vary
depending on the specific characteristics of CME source re-
gions. This variation affects CME dynamics, as regions with a
higher decay index are typically associated with faster CMEs
due to the stronger outward magnetic force overcoming the
confining magnetic tension. (Liu 2007; Xu et al. 2012; Deng
& Welsch 2017; Cheng et al. 2020). Subsequent theoretical
investigations have identified ranges of critical decay index of
1.1 to 1.3 for linear flux ropes and 1.5 to 1.9 for circular con-
figurations, with empirical studies confirming average critical
values around 1.2±0.2 and 1.6±0.1 for quiescent filaments
and active channel flux ropes (Fan & Gibson 2007; Démoulin
& Aulanier 2010; Fan 2010; Cheng et al. 2020)

The critical height is the altitude above the photosphere
where the decay index reaches its critical value nc, typically
around 1.5 for torus instability. At this height, the restraining
forces from the overlying magnetic fields become insufficient
to confine the outward magnetic pressure gradient, enabling a
CME eruption. The initial acceleration of a CME is strongly
influenced by the magnetic conditions at this height (Pat-
sourakos et al. 2010; James et al. 2022), with the CME’s
speed closely linked to the magnetic environment of its erup-
tion site (MacQueen & Fisher 1983; Zhang & Dere 2006).
We hypothesize that higher critical heights are correlated with
faster CME speeds because they correspond to source regions
with weaker coronal magnetic fields above the torus instability
onset that allow flux ropes to accelerate more effectively after
reaching the threshold (nc(h)=1.5). When the onset of the
torus instability occurs higher up in the corona (i.e. from a
higher critical height), the erupting flux rope must travel a
shorter distance through the weak upper corona on its way
into the heliosphere and therefore experiences less retardation

from magnetic tension than a CME that erupts from lower
down in the corona. This will allow the flux rope to accelerate
more effectively after reaching the torus instability threshold..

Calculating critical height from magnetic field extrapola-
tions significantly bridges the observational gap in early CME
development, where visible signs of instability are not yet
apparent (Zuccarello et al. 2015). The importance of deter-
mining the critical height lies in its ability to provide a quan-
tifiable metric for assessing the likelihood of CME eruptions
(James et al. 2022). In this context, critical height serves as a
valuable marker derived from extrapolated magnetic field con-
figurations above the photosphere, identifying regions where
the axis of the flux rope is at the critical height.

The complexity of CME source regions, alongside the criti-
cal height and decay index, plays a significant role in deter-
mining CME speed and dynamics. Studies show that CME
speed — a crucial factor for geoeffectiveness, correlates with
the magnetic properties of the source region. Active regions
classified under the Hale system (Hale et al. 1919) as βγδ
sunspot groups, indicating complex magnetic configurations,
high magnetic shear and multiple polarity inversion lines have
been linked to more energetic solar events, including faster
CMEs (Su et al. 2007; Sammis et al. 2000; Wang & Zhang
2007; Falconer et al. 2002; Schrijver 2007; Georgoulis &
Rust 2007) (Srivastava & Venkatakrishnan 2004; Gopalswamy
2006; Kontogiannis et al. 2019).

Faster Earth-directed CMEs lead to stronger geomagnetic
disturbances due to their higher ram pressure and shock-
driving potential (Willis 1964; Srivastava & Venkatakrish-
nan 2004; Siscoe & Schwenn 2006; Gopalswamy et al. 2008;
Zhang et al. 2021). However, the speed estimation for such
CMEs is subject to large uncertainties. This is primarily
because faster CMEs have reduced observational data from
coronagraphs, which limits the accuracy of tracking their
propagation paths and velocities through interplanetary space.

Despite these advances, many past studies have relied on
plane-of-sky speeds derived from single-viewpoint observa-
tions, which are subject to projection effects and often under-
estimate the 3D (true) speed of CMEs (e.g., Burkepile et al.
(2004); Richardson & Cane (2010); Bidhu et al. (2017); Pant
et al. (2021) and references therein). Projected speeds do not
capture the 3D perspective and can result in significant errors
when used to correlate CME dynamics with source region
characteristics (Webb 2000; Temmer et al. 2009; Gandhi et al.
2024). 3D speed refers to the three-dimensional propagation
speed of the CME, accounting for its full spatial motion rather
than the apparent motion confined to the plane of the sky.
Note that in this section and elsewhere, the GCS fitted CME
parameters are referred to as ’3D’, although this is, of course,
subject to the assumption that the chosen geometrical model
is the correct choice of geometry for all CMEs analysed.
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The Graduated Cylindrical Shell (GCS) model developed
by Thernisien et al. (2006, 2009) is a widely used geomet-
rical framework that reconstructs CME geometry in three-
dimensions by combining multi-viewpoint observations from
Solar TErrestrial RElations Observatory (STEREO) (Kaiser
et al. 2008) and the Large Angle and Spectrometric Coron-
agraph (LASCO) (Brueckner et al. 1995) instruments. This
approach mitigates projection effects and provides a more
accurate representation of CME dynamics. For a detailed re-
view of projected speeds, refer to Gandhi et al. (2024), where
they compared plane-of-sky and 3D speeds of 360 CMEs,
demonstrating that the average 3D speed is approximately
1.3 times greater than the plane-of-sky speed. These findings
underscore the importance of using 3D speed measurements
to achieve reliable correlations with predictive parameters
like critical height. By obtaining 3D speeds, we can better
understand how source region conditions relate to 3D CME
speeds.

In this study, we test this hypothesis by examining the rela-
tionship between the 3D speeds of 37 CMEs, derived from the
GCS geometrical model, that originate from active regions
with varying Hale classifications, and the critical heights cal-
culated at CME onset. A unique aspect of this study is the
use of both automated and manual methods for detecting PILs
and calculating critical heights, providing a comprehensive
comparison of the two approaches. The automated method
enables efficient and continuous tracking of critical height,
suitable for real-time forecasting, while the manual method
allows precise post-event analysis in complex regions. By
examining the critical height along PILs and its influence on
CME dynamics, our study clarifies how these parameters can
serve as reliable indicators of CME speed.

Section 2 details the data selection, methodology for auto-
mated and manual PIL detection, critical height calculations,
and the 3D reconstruction of CME speeds. The uncertainties
associated with these measurements are carefully quantified,
adding robustness to the results. Section 3 presents the results
from automated and manual PIL methods. Section 4 then pro-
vides a comprehensive discussion, comparing the strengths
and limitations of each method, followed by the conclusions.

2. DATA AND METHOD

This section describes the selection and analysis of 37 ac-
tive regions of different hale classifications that produced one
or more CMEs during the time period studied. The primary
objective of this study is to investigate the relationship be-
tween differences in the extrapolated coronal magnetic field
above an active region and the kinematics of CMEs.

The following criteria were used to select the active re-
gions: Active regions were required to be within ±45 degrees
longitude of disk center. We reviewed observations using

JHelioviewer1 (Müller et al. 2009, 2017) to observe CME
signatures below the occulting disk, such as flare signatures or
loop structures within the active region. These observations
were correlated with the appearance of CMEs in the LASCO
C2 coronagraph to estimate the approximate onset time of the
CMEs.

Section 2.1 details the method for detecting polarity inver-
sion lines and determining the critical height. Section 2.2
describes the data and the methodology used for fitting CMEs
using the GCS technique from multiple viewpoints, followed
by the estimation of height-time profiles and 3D speeds.

2.1. PIL Detection and Critical Height Estimation

Figure 1. NOAA AR 11035 within TARP 13189. Positive (negative)
magnetic flux is shown in white (black). One pixel represents about
1.4 Mm. The purple contour outlines the weak field bitmap region,
and the green contour outlines a region where strong positive and
negative polarities are close to each other. In the lower panel, an
additional orange box defines a sub-region where EUV observations
suggest a CME erupted from. The longest continuous PIL section
within all relevant contours is identified (contoured in yellow), and
each pixel along it is coloured to represent the critical height above
it. A linear fit to each PIL is shown in red and used to infer the tilt
angle of each PIL relative to the Y axis (solar north).

To model the coronal magnetic field of each active region,
we use the Cartesian, Fourier method of Alissandrakis (1981)
to extrapolate the potential magnetic field above radial field
magnetograms from the Space-Weather HMI Active Region
Patch (SHARP; Bobra et al. 2014) data series. We also use
some Space-Weather MDI Active Region Patches (SMARPs;

1 https://www.jhelioviewer.org/
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Bobra et al. 2021), but this dataset does not contain radial
field magnetograms. Instead, we approximate the radial field
component using the method of Leka et al. (2017), first extrap-
olating the full vector potential field from their line-of-sight
field components and then taking the radial field component
from the bottom layer of the extrapolation volume. Critical
heights based on potential field extrapolations of MDI mag-
netograms that are radialised in this way generally agree well
with critical heights obtained from extrapolations of HMI
radial-field observations of the same active regions (James
et al. 2024). The potential field is commonly used as an
approximation for the field external to a current-carrying mag-
netic flux rope (e.g. Török & Kliem 2007; Zuccarello et al.
2015; Wang et al. 2017), and the extrapolated horizontal field
is used as a proxy for the poloidal field component (e.g. Liu
2008; Zuccarello et al. 2015; Wang et al. 2017; James et al.
2022), which is relevant to the decay index. Under these
assumptions, we calculate the decay index throughout each
extrapolated coronal field volume as given by Equation (1).
We use two slightly different methods to estimate the critical
height above polarity inversion lines (PILs) in active regions
at the onset time of each CME: an automated method (Method
I) and a manual method incorporating additional observations
(Method II), both of which are based on the method used by
James et al. (2024).

In both methods, we locate photospheric PILs by spatially
smoothing magnetograms using a 20 × 20 pixel moving aver-
age window and identifying the boundaries between positive
and negative magnetic fluxes. Then, we use “weak field”
bitmaps of magnetic field strength from the SHARP/SMARP
data series to select only PIL pixels that are located in areas
where the magnetic field is stronger than the quiet Sun within
the purple contours in Figure 1. Furthermore, we select only
PIL pixels situated between strong opposite magnetic polari-
ties using a calculation similar to that of the Schrijver (2007)
R parameter within the green contours in Figure 1. These tech-
niques can result in the detection of multiple disconnected
PIL sections. James et al. (2024) use all detected PIL pixels
to calculate the critical height, but here, we select only the
longest continuous section for further analysis.

For the other method (Method II), we take the extra step of
also using EUV observations of flare arcades, flare ribbons,
and coronal dimmings to identify the specific part of each
active region that was active during the eruption of each CME.
Within this sub-region (orange box in the lower panel of Fig.
1), we use the previously described steps to search for the PIL
section that was most relevant to the eruption. We note that
sometimes this PIL is in a different part of the active region
to the longest PIL identified by the first method. An example
from each PIL detection method is shown in Fig. 1.

Once each PIL is identified, we examine the column in the
extrapolation volume above each PIL pixel and note the height

at which the critical decay index (nc = 1.5) occurs. If more
than one critical height is found above a given PIL pixel (e.g.
there is a “saddle” in the decay index-height profile, Guo et al.
2010; Luo & Liu 2022, see the bottom right panel of Fig. 3 for
an example), we select the lowest critical height because they
tend to be more comparable to the critical heights in regions
that do not exhibit saddles, and CMEs have been observed to
initiate from these lower critical heights despite sitting beneath
a second torus-stable zone (Wang et al. 2017). Finally, we
take the mean of the critical heights found above all pixels
along the PIL to obtain a single critical height representative
of each magnetogram. We give the standard deviation of
critical heights along the PIL as an estimate of error.

Figure 2. Temporal variation of the critical height (Mm) for NOAA
AR 11035 from December 14 to 19, 2009. Black error bars show
measurement uncertainties (standard deviation along the PIL). The
red ‘X’ marks the interpolated critical height at CME onset, while
the blue triangle indicates the critical height from the second method
for the CME-associated PIL subsection.

The differences in the methods of PIL detection used lead to
differences in the critical heights we obtain. The first method,
which relies on automatically-detected PILs, is used on ex-
trapolations of magnetograms that were taken at 00:00 UT
every day of each active region’s disk passage. In this way,
we can track the critical height throughout the observed disc
passage of each active region (see Figure. 2). The application
of this automated PIL detection to magnetograms taken at
regular intervals represents a more “operational” approach
to estimating the critical height. However, this method has
two primary limitations. Firstly, the automated detection of
PILs can result in very long, winding PILs, along which the
critical height can vary significantly. Therefore, averaging the
critical heights from above every PIL pixel can lead to the
inclusion of very high and very low critical heights. This is
quantified by the standard deviation error estimate given with
each critical height measurement.
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Figure 3. Left: automated (top) and manual (bottom) PILs detected in NOAA AR 11283 within HARP 00833. Right: black curves represent the
mean decay index vs height above the automated (top) and manual (bottom) PILs. The blue intervals represent the standard deviation of the
decay index along the respective PIL at each height. The black dotted horizontal line marks the critical decay index threshold nc = 1.5, and the
red vertical lines show the corresponding critical heights. The decay index profile above the manually selected PIL exhibits a saddle-like shape
with two critical heights.

The second limitation is that, to estimate the critical height
at the time of the CME onset, we assume the critical height
(and its uncertainties) evolves linearly between the values
we obtain at 00:00 UT each day and interpolate what the
critical height would have been at the time of eruption. This
means the extrapolation closest in time to CME onset could
represent solar conditions up to 12 hours before or after the
CME time. An example of this kind of interpolated critical
height is shown in Fig. 2 by a red ‘X’.

The second PIL detection method addresses these limi-
tations by using extrapolations of magnetograms that were
observed closest to the onset times of each CME. Due to
the cadence of the SHARP (SMARP) data series, this means
the critical heights are calculated using data no more than
12 minutes (96 minutes) before or after the CME onset time.
Furthermore, our usage of EUV observations to determine the
localised section of the PIL where each CME erupted from
reduces the influence of potentially extreme critical height
values from elsewhere along the PIL that were not physically
relevant to the eruption. Therefore, this method solves the
two main drawbacks of the first, “operational” method. How-
ever, unlike the “operational” method, this kind of “manual”
critical height estimate can only be performed after a CME
has already occurred. Whilst the limitations of timing could
be minimised by extrapolating near-real time magnetogram
datasets, predicting and selecting the specific section of PIL
where a CME will erupt from is difficult. In this way, we

can consider this method to give a more precise, post-event
analysis of the critical height. An example of critical height
obtained using this method is shown in Figure 2 by a blue
triangle.

Critical heights (marked with an ∗ in Table 1 for selected ac-
tive regions were directly extracted from James et al. (2022) to
increase the sample size. The method used to determine these
critical heights differs slightly from the other methods em-
ployed in this study. The James et al. (2022) values are based
on manually defined AR subregions (not fully automated), can
contain multiple PIL sections (not just the longest PIL sec-
tion), and are based on magnetograms from the closest hour
to each CME onset time (i.e. not interpolated). In these ways,
this approach represents a hybrid between the automated and
manual methods. As they are based on multiple long, messy
PIL sections in contrast to the manual method which selects a
single small section of a PIL where eruption signatures were
observed, they have been included in the automated column
of Table 1.

Direct observations of EUV eruption signatures in five ac-
tive regions (see table for their NOAA numbers) revealed PILs
that differed from the automatically detected PILs. These man-
ually identified PILs exhibited distinctive saddle profiles in
their mean decay index variations with height. Figure. 3
shows one such example of this type of profile. The EUV
eruption signatures led us to examine a small PIL section in

songyongliang
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Figure 4. Fittings of the GCS flux rope to the COR2A (left), C2 (middle) and COR2B (right) images of a Halo CME of 2011/02/15 at 03:34
UTC that erupted from NOAA 11158.

a different part of the active region to where the longest PIL
was detected automatically.

The decay index profiles are quite different above the two
PILs. The mean decay index above the automatically detected
PIL exhibits a smooth, monotonic increase with height, cross-
ing the critical decay index threshold once at a critical height
of 58 Mm. The mean decay index above the PIL in the manu-
ally defined region of interest first crosses the critical decay
index at a height of 16 Mm and continues to increase until
about 35 Mm. However, the mean decay index then begins to
decrease again until a height of 70 Mm, becoming sub-critical
once again. Above this height, the mean decay index increases
once more, reaching a second critical height at 128 Mm. A
torus-stable region (where the mean decay index is less than
1.5) exists above this PIL in the height range 55 − 128 Mm.

For events with complex active region configurations, the
manual method provides a more comprehensive understand-
ing of the magnetic field’s spatial variation by focusing on
eruption-associated PIL regions. This approach allows the
identification of features such as saddle profiles, which might
otherwise be overlooked by automated methods that focus on
different sections of the same active region.

2.2. 3D reconstruction and Velocity Estimation

3D reconstruction of 37 CMEs was performed using the
GCS model. The data used for these events were sourced
from the STEREO/SECCHI-COR2A and STEREO/SECCHI-
COR-2B coronagraphs, STEREO Extreme UltraViolet Imager
(EUVI) (Kaiser et al. 2008), and the SOHO/LASCO-C2/C3
(Bonnet & Felici 1997) coronagraphs. EUVI and COR-2 level
0.5 data were processed to level 1.0 using the secchi prep.pro
routine in the Solarsoft library of the Interactive Data Lan-
guage (IDL). For LASCO, we utilized level 1 data, which
were corrected for instrumental effects, solar north orienta-
tion, and calibrated to physical units of brightness (Majumdar
et al. 2020).

To track CME evolution in the outer corona, the GCS model
was fitted simultaneously to COR-2 (field of view: 2.5–15
R⊙) and LASCO C2/C3 (field of view: 2.2–30 R⊙) images
manually. An example of the GCS fitting for the event on
2011/02/15 at 03:34 UT is shown in Figure 4. Key GCS pa-
rameters such as latitude, longitude, aspect ratio, tilt angle,
height, full angular width, and the derived 3D speed were
recorded for each CME. Following the GCS geometrical fit-
ting, the average 3D speed is estimated using height-time
data, with a linear regression applied to determine the average
3D speed, as illustrated in Figure 5. To ensure consistency
across speed estimates for all CMEs, we maintained a simple
linear relationship between distance and time. As GCS fitting
is a manual technique, potential human bias could influence
the modeled parameters. To enhance the reliability of the
speed and width estimates, we conducted the fitting procedure
multiple times, exploring a range of values for each fitting
parameter to reduce uncertainty.

Since three-vantage point observations have been unavail-
able following the malfunction of STEREO-B in 2014, certain
parameters (latitude, longitude, and tilt angle) were fixed for
the 2015-12-28 event based on the CME source region loca-
tion, while height, half-angle, and aspect ratio were fitted to
the image time series. The fitting procedure followed method-
ologies outlined by Thernisien et al. (2006, 2009); Majumdar
et al. (2020) and Gandhi et al. (2024).

Table 1 provides a comprehensive summary of the charac-
teristics of the 37 CMEs analyzed in this study. It includes
details such as CME date, first C2 appearance time, onset time,
NOAA active region number, and Hale class to represent the
complexity of the associated active regions. Additionally,
the table lists the GCS model parameters, including derived
speed and angular width, CDAW-provided projected speeds,
and the critical heights computed using both automated and
manual PIL detection methods, along with their associated
uncertainties.

https://cdaw.gsfc.nasa.gov/
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Figure 5. Height-time plot of a 2011/02/15 CME showing GCS
height points in combined C2/C3, COR2A and COR2B FOV. The
linear regression line represents the best fit to the data points, pro-
viding an estimate of the average 3D speed of the CME over the
observed time interval.

Most 3D speeds were adopted from our previous work
(Gandhi et al. (2024)), which presented a catalog (Harshita
2024) of 3D and 2D speeds for 360 CMEs, where these events
were initially fitted, while a subset of events were newly fitted
using the GCS model.

3. RESULTS

This section presents the results obtained using automatic
(Method I) and manual (Method II) PIL detection approaches
and their relationship to CME speeds. Critical heights, which
represent the altitudes where torus instability is triggered,
are calculated using radialized-field magnetograms from the
SMARP and SHARP databases. Projected (2D) speeds are
sourced from the SOHO LASCO CDAW catalog, and 3D
speeds obtained through the GCS model applied to multi-
point coronagraph data. Confidence intervals (CI) for lin-
ear/Pearson (R) and rank-order/Spearman (ρ) correlation co-
efficients are computed using the bootstrapping method to
ensure robust statistical estimates. By evaluating the relation-
ship between critical heights and CME speeds across these
methodologies, the analysis highlights the influence of PIL
detection techniques on understanding CME dynamics and
provides insights into the accuracy of magnetic field-based
predictions for space weather forecasting.

3.1. 2D and 3D CME speeds vs critical heights from
automatic PIL detection

Figure 6 shows the relationship between interpolated critical
heights and 2D CME speeds. Interpolated critical heights are
derived from automatic polarity inversion line (PIL) detection,
averaged along the PIL, and calculated by assuming linear
evolution between daily magnetogram observations at 00:00
UT. A total of 37 CMEs are analyzed. The linear/Pearson
correlation between critical height and 2D speed is R = 0.48

± 0.12 (1σ), with a 68% CI of (0.36,0.61) and a statistically
significant p < 0.001. The Spearman correlation coefficient,
which is more robust to outliers is ρ = 0.55 ± 0.15 (1σ),
with a 68% CI of (0.40, 0.69) and p < 0.001. The later is
numerically higher than the former. However, their overlap-
ping confidence intervals suggest that the difference is not
statistically significant. The fitted linear regression model,
y = 15.34x − 71.79 , shows a slope of 15.34 km/s per Mm.
However, variability is evident, as shown by the confidence
intervals around the fitted line, attributed to the influence of
averaged critical heights from the long, winding PILs.
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Figure 6. Interpolated critical height at CME onset (Mm) plotted
against CME projected speed (km/s) for 37 events. The solid line
represents the linear fit (y = 15.34x − 71.79) with a 95% confidence
interval. The linear/Pearson correlation coefficient is R = 0.48 ±0.12
and Spearman correlation coefficient is ρ = 0.55 ± 0.15.

Figure 7 presents the relationship between interpolated criti-
cal heights and 3D CME speeds derived from the GCS method
using multi-point coronagraph data. The Pearson correla-
tion between interpolated critical heights and 3D speeds is
R = 0.71 ± 0.08, with a 68% CI of (0.62, 0.78) and a statis-
tically significant ( p < 0.001 ). The Spearman correlation
coefficient is ρ = 0.71 ± 0.08 (1σ), with a 68% CI of (0.62,
0.78) and p < 0.001. Both correlations are identical, indicat-
ing strong agreement between the two measures. The linear
regression model, y = 23.57x − 278.52, shows a steeper slope
of 23.57 km/s per Mm. This result reflects a more substantial
increase in CME speed per unit rise in critical height when
using 3D speeds, as compared to the 2D speeds. The tighter
clustering of data points around the regression line suggests
that 3D CME speed aligns more closely with the critical height
compared to the projected speed analysis.

These results highlight the stronger correlation between
interpolated critical heights and 3D CME speeds compared to
projected speeds. While the increased number of pixels can
lead to larger standard deviations and the difference in time
between the extrapolations and the CME onset introduces
inaccuracy, the method still captures statistically significant
trends in the relationship between critical heights and CME
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Figure 7. Interpolated critical height at CME onset (Mm) plotted
against 3D CME speed (km/s) for 37 events. The solid line represents
the linear fit (y = 23.57x − 278.52) with a 95% confidence interval
shown as grey shaded region. The Pearson and Spearman correlation
coefficient is 0.71 ± 0.08.

dynamics, reinforcing the method’s reliability in representing
key magnetic conditions that influence CME kinematics.

3.2. 3D CME speeds vs Mean critical heights from manual
PIL detection

The relationship between mean critical heights and 3D
CME speeds, as determined using manually selected polarity
inversion lines (PILs), is shown in Figure 8. Unlike the au-
tomated method, the manual method focuses on identifying
PILs within sub-regions of the active region along which the
CME originated. This approach utilizes EUV observations
to refine the selection of the PIL section, allowing for more
localized critical height measurements.

Figure 8 presents data for all 37 CMEs analyzed, with blue
points representing the 32 non-saddle events (single critical
height) and red and green points indicating the five saddle
events (two critical heights). The correlation between mean
critical height and 3D CME speed varies based on how events
with saddle-shaped decay index profiles (hereafter referred
to as saddle events or saddle profiles) are treated. When
saddle events are excluded, the Pearson correlation coeffi-
cient is R = 0.58±0.13, with a 68% CI of (0.43, 0.69) and
the Spearman correlation is ρ = 0.42±0.18, with a 68% CI
of (0.23, 0.58), indicating a moderate linear relationship be-
tween mean critical height and CME speed compared to the
relationship from Method I. The linear fit shown in violet is
described by y = 13.50x + 206.97 Including saddle events
by considering the lower critical heights (red points) reduces
the correlations to R = 0.43±0.15, with a 68% CI of (0.26,
0.56) and ρ = 0.27±0.18, with a 68% CI of (0.08, 0.44) with
the linear fit given by y = 8.94x + 409.87, reflecting that the
inclusion or exclusion of saddle profiles affects the overall
spread in the mean critical heights. Including saddle events
by considering the higher critical height (green points) results

in a near-zero correlation (yellow dashed line), suggesting a
poor relationship between these heights and CME speeds.

The scatterplot demonstrates the impact of saddle events
on the overall correlation. The red points, corresponding to
lower critical heights, align partially with the trend of non-
saddle events but introduce substantial variability, weakening
the correlation. The green points, representing higher critical
heights, deviate significantly from the main trend, resulting
in negligible or negative correlation values. These results
highlight the sensitivity of the manual method to the choice of
critical height in regions with complex decay index profiles.
Among the five saddle CMEs, the differences between lower
and higher critical heights have a notable impact on the overall
trends observed in the data.

Figure 8. Mean critical height at CME onset (Mm) vs. 3D CME
speed (km/s) with error bars is shown for 37 events in (a), with blue
points for 32 non-saddle CMEs, and red/green for saddle events with
lower/higher critical heights. (b) excludes green points. The violet
line fits blue points only (R = 0.58±0.13 and ρ = 0.42 ±0.18), the
green line includes blue and red points (R = 0.43±0.15 and ρ = 0.27
±0.18),and the yellow dashed line indicates almost zero correlation.

4. DISCUSSION AND CONCLUSION

This study explores whether there is a relationship between
mean critical heights and CME speeds, focusing on automated



10

and manual polarity inversion line (PIL) detection methods.
The automated method, which analyzes the longest PIL struc-
ture in case of multiple PILs in an active region, demonstrates
a strong positive linear correlation (R = 0.71 ± 0.08) with
3D CME speeds as shown in Figure 7. This result highlights
its reliability for capturing large-scale magnetic conditions
influencing CME dynamics. The manual method, while pro-
viding localized insights by focusing on subset of pixels rel-
evant to eruption events, achieves a lower linear correlation
(R = 0.58±0.13) for non-saddle events as shown in Figure 8.

Saddle profiles (see bottom panel of Figure 3), character-
ized by multiple critical heights above the same PIL section,
are a significant source of complexity, as observed in the
manual method. When lower critical heights (red points) are
included, the linear correlation decreases to R = 0.43±0.15
. Including higher critical heights (green points) results in a
negligible correlation, highlighting their deviation from the
main dataset dominated by lower critical heights as shown
in Figure 8. These findings strongly support the choice of
using the lower critical height in saddle regions as a more
reliable predictor of CME speed. This result validates the
approach of prioritizing lower critical heights and represents
a significant contribution to the field, providing a robust ba-
sis for future studies. Combining this result with automated
PIL detection offers a promising framework for improving
pre-eruptive predictions.

Interestingly, no saddle profiles were observed in the au-
tomated PIL detection results. This could be due to the av-
eraging across longer, continuous PILs, which smooths out
localized variations in the decay index profile. Longer PILs,
while reducing the likelihood of identifying saddles, introduce
other forms of variability due to fluctuations along their length.
This observation aligns with previous studies that emphasize
the importance of long PILs in capturing overall magnetic sta-
bility (e.g., Xu et al. (2012)). However, further investigation is
needed to determine the occurrence and influence of saddles
in both automated and manual methods.

The findings presented in this work are consistent with our
hypothesis that higher critical heights correlate with higher
CME speeds because the weaker coronal magnetic fields
above the onset of the torus instability (nc(h) = 1.5) allow
the flux ropes to accelerate more effectively after reaching
the torus instability threshold. The need for the flux rope
to rise further before reaching the critical height might al-
low increased energy build-up, contributing to higher CME
speeds. The strong linear/Pearson and Spearman positive
correlation observed using the automated method R = 0.71
± 0.08 supports this interpretation, as longer PILs analyzed
by this method provide a more comprehensive view of the
magnetic environment above a source region, influencing
CME dynamics. The lower correlation in the manual method
R = 0.58 ± 0.13 for non-saddle events highlights the local-

ized variations in magnetic conditions that may affect the flux
rope’s acceleration, emphasizing the complexity of the critical
height-speed relationship. This study thus provides empirical
evidence supporting the role of critical height as a diagnostic
parameter for predicting CME speeds.

An alternative hypothesis is that faster CMEs can result
from regions with lower critical heights. This view suggests
that eruptions in these regions could involve more flare re-
connection as the flux rope rises through stronger overlying
magnetic fields, hence, accelerating the CME. However, our
results do not support this hypothesis. Instead, the strong cor-
relations we observe between critical height and CME speed
suggest that both the weaker overlying coronal fields above
the torus instability zone and increased buildup of energy in
the flux rope at higher critical heights are the factors affecting
CME speeds. Alternatively, the stronger underlying fields
could raise the critical height by forcing the CME outward
more forcefully. Future observational and modeling studies
should aim to distinguish between these two scenarios by mea-
suring both the overlying field strength and the underlying
field strength near the eruption site, which would help clarify
the roles of these competing (or coexisting) factors.

The findings presented here build on prior work, such as
James et al. (2022), which identified the critical decay index
as a determinant for CME initiation. While previous studies
have often relied on projected speeds in relation to decay
index, this study demonstrates that 3D speeds derived from
GCS model correlate more strongly with critical heights (
R = 0.71 ± 0.08 vs. R = 0.48 ± 0.12 shown in Figures 6
and 7). This improvement emphasizes the necessity of multi-
point observations for reducing projection effects, a limitation
inherent in single-viewpoint data. The improved correlation
highlights the potential of critical height as a predictive metric
when combined with 3D speed measurements, advancing our
understanding of CME dynamics.

The automated PIL detection method emerges as a valuable
tool for operational forecasting, offering high correlations
with CME speeds while maintaining efficiency for large-scale
monitoring. Although daily interpolations introduce timing
limitations, the integration of near-real-time magnetograms
could mitigate this issue, enabling forecasters to update criti-
cal height measurements closer to CME onset. This approach
bridges the gap between precision and practicality, addressing
the primary limitation of interpolation-based methods.

The manual method, while less suited for real-time appli-
cations in terms of time consumption, offers detailed insights
into localized PIL dynamics and the impact of saddle profiles.
Future improvements in combining these approaches could
leverage the strengths of both methods, enabling accurate,
timely predictions. For example, integrating automated PIL
detection with manual refinements in high-risk regions could
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enhance forecasting accuracy without sacrificing operational
efficiency.

The results presented here lay the foundation for explor-
ing additional factors influencing CME dynamics. While this
study focuses on critical heights as a predictor of CME speeds;
magnetic field strength (|B|) and other reconnection-related
parameters have been identified as important factors in previ-
ous studies (Moon et al. 2002; Qiu & Yurchyshyn 2005; Guo
et al. 2006, 2007; Jain et al. 2010; Bein et al. 2012; Berkebile-
Stoiser et al. 2012; Salas Matamoros & Klein 2014; Takahashi
et al. 2016). Testing predictions that CME speed scales with
the product of (|B|) and reconnected flux, as well as examining
their correlations with decay index, represents a natural exten-
sion of this work. Previous investigations into the formation of
fast CMEs have highlighted various source-region parameters
that correlate with CME speeds. Su et al. (2007) and Wang &
Zhang (2008) found weak but positive correlations between
CME speeds and extensive parameters such as magnetic flux,
area, and average photospheric field strength. Structural prop-
erties, including the number of polarity inversion lines (PILs),
their length, and measures of magnetic complexity, also show
varying levels of correlation (Guo et al. 2006; Kontogiannis
et al. 2019). Notably, Kontogiannis et al. (2019) reported that
the length of the main PIL and total non-neutralized current
exhibited high correlation coefficients (c > 0.8) for fast CMEs
(Vcme > 750km/s).

Combined parameters, which account for both the magni-
tude and structure of the source region, have been identified
as stronger predictors of CME speeds. Free magnetic energy
and helicity, as indicators of non-potentiality, show moderate-
to-strong correlations with CME speed (Venkatakrishnan &
Ravindra 2003; Liu 2007; Gopalswamy 2009). For example,
Park et al. (2012) and Kim et al. (2017) found high correla-
tions ( c = 0.8) between helicity injection rates and CME
speeds in cases with a uniform helicity sign during the en-
ergy buildup phase. Xu et al. (2012) and Deng & Welsch
(2017) demonstrated that a higher decay index, indicative of
reduced downward tension forces in the coronal magnetic
field, correlates well with higher CME speeds, with Xu et al.
(2012) suggesting that this parameter underpins several other
source-region effects.

The relationship between CME speed and flare reconnec-
tion parameters has also been explored extensively. Deng
& Welsch (2017) observed a correlation coefficient of 0.76
for ribbon flux, which quantifies reconnected magnetic flux
during the associated solar flare, in a sample dominated by
fast CMEs. However, other flare-related measures, such as
peak soft X-ray flux and reconnection rate, typically exhibit
weaker correlations, emphasizing the need to consider addi-
tional physical factors. Liu (2007) further highlighted that
CMEs originating from unidirectional open-field structures

(pseudostreamers) tend to be faster on average than those from
closed-field loop arcades.

Incorporating these findings into models, along with the
relationships between decay index, |B|, and reconnected flux,
could significantly improve predictive capabilities. However,
the scatter in many of these correlations indicates that CME
speed is likely influenced by a complex interplay of multiple
parameters, including both primary source-region properties
and secondary effects such as the coronal field structure and
solar wind interactions

This study demonstrates the predictive potential of mean
critical height for CME speeds but acknowledges several limi-
tations. The reliance on the GCS geometrical model assumes
a three-part CME structure, which may not apply to all events.
Similarly, while the automated method efficiently captures
large-scale variations, it overlooks small-scale variations that
could affect specific CME events.

In five cases (one such case shown in Figure 3), the longest-
contiguous PIL as identified by Method I is not associated
with the EUV emission corresponding to the eruption of in-
terest. This may suggest that such PILs, while dominant in
the photospheric field, do not meaningfully contribute to the
dynamics of the eruption. Nevertheless, critical height as
determined using the longest-contiguous PILs provides very
strong correlations with CME speed, indicating the robust-
ness of this method. This would suggest that dynamically
significant critical heights may be insensitive to the detailed
photospheric structures, such as the exact choice of PILs, but
rather it may be enough to capture the overall decay of the
magnetic field of the source region with height in order to
predict the CME speeds. This is in agreement with expecta-
tions that higher-order multipole terms, corresponding to finer-
scale photospheric magnetic fields, fall off more quickly with
height to leave the largest-scale photospheric fields dominat-
ing the extrapolated magnetic structure at active-region-scale
altitudes (Archontis & Syntelis 2019; Liu 2020; Vemareddy
2024). Again, this underlines the importance of large-scale
magnetic configurations over the fine details of individual
PILs in determining critical heights. Further investigation
of this insensitivity could improve the calculation of critical
heights for operational forecasting.

The manual method, while providing detailed insights into
localized PIL spatial variations, is less suited for operational
use due to its time-intensive nature. The variability introduced
by saddle profiles in critical height estimation highlights a
complexity that may not always be apparent in the automated
method, potentially due to its averaging process or the limita-
tions of the dataset analyzed here. Further investigation with
a larger dataset is needed to confirm whether saddle profiles
are consistently absent in automated detections or if they are
simply smoothed out along the longer PILs.
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Future research should address these limitations by expand-
ing datasets to include a wider range of CME events and
refining critical height detection methods before operational
forecasting can be done. While the critical height is essen-
tial for understanding CME dynamics, it is also important
to consider that other factors, such as solar cycle variations
and magnetic field strengths, can significantly influence CME
behavior and characteristics. These efforts would advance
space weather forecasting by providing a more comprehen-
sive framework for understanding CME dynamics.

Our results demonstrate that for 37 CMEs, the near real-
time automated calculation of the critical height for active
regions can provide a rough estimate of the speed of any CME
that may erupt, which is evidently beneficial for forecasting.
This initial speed estimate can also complement or serve as

a useful starting point for subsequent speed measurements
obtained from coronagraph observations.

ACKNOWLEDGMENTS

H.G. is supported by the Science and Technology Facilities
Council (STFC) PhD award at Aberystwyth University. A.W.J.
acknowledges funding from the STFC Consolidated Grant
ST/W001004/1. The authors gratefully acknowledge the SEC-
CHI/STEREO consortium for providing the data used in this
study. We also thank the SOHO/MDI, SOHO/LASCO, and
SDO/HMI and EUV consortia for their invaluable data contri-
butions. The authors extend their gratitude to L.M.G and H.M.
for their constructive comments, which greatly enhanced this
study. Without their input, this work would not have been
possible. We also acknowledge FBAPS, Aberystwyth Univer-
sity, for providing computing facilities and support. Finally,
we express our gratitude to all contributing teams for their
dedication to supporting open scientific research.

REFERENCES

Alexakis, P., & Mavromichalaki, H. 2019, Astrophysics and Space
Science, 364, 187

Alissandrakis, C. E. 1981, A&A, 100, 197

Archontis, V., & Syntelis, P. 2019, Philosophical Transactions of the
Royal Society A, 377, 20180387

Bateman, G. 1978

Bein, B., Berkebile-Stoiser, S., Veronig, A., Temmer, M., & Vrsnak,
B. 2012, arXiv preprint arXiv:1206.2144

Berkebile-Stoiser, S., Veronig, A., Bein, B., & Temmer, M. 2012,
arXiv preprint arXiv:1205.2539

Besliu-Ionescu, D., & Mierla, M. 2021, Frontiers in Astronomy and
Space Sciences, 8, 672203

Bidhu, S., Iren, S., & Dickson, B. 2017, Journal of Space
Exploration, 6, 122

Bobra, M. G., Sun, X., Hoeksema, J. T., et al. 2014, SoPh, 289,
3549, doi: 10.1007/s11207-014-0529-3

Bobra, M. G., Wright, P. J., Sun, X., & Turmon, M. J. 2021, ApJS,
256, 26, doi: 10.3847/1538-4365/ac1f1d

Bonnet, R., & Felici, F. 1997, Advances in Space Research, 20, 2207

Brueckner, G., Howard, R., Koomen, M., et al. 1995, The SOHO
mission, 357

Burkepile, J., Hundhausen, A., Stanger, A., St. Cyr, O., & Seiden, J.
2004, Journal of Geophysical Research: Space Physics, 109

Chen, J. 2017, Physics of Plasmas, 24

Cheng, X., Zhang, J., Kliem, B., et al. 2020, The Astrophysical
Journal, 894, 85

Démoulin, P., & Aulanier, G. 2010, The Astrophysical Journal, 718,
1388

Deng, M., & Welsch, B. T. 2017, Solar Physics, 292, 1

Falconer, D., Moore, R., & Gary, G. 2002, The Astrophysical
Journal, 569, 1016

Fan, Y. 2010, The Astrophysical Journal, 719, 728

Fan, Y., & Gibson, S. 2007, The Astrophysical Journal, 668, 1232

Forbes, T. 2000, Journal of Geophysical Research: Space Physics,
105, 23153

Forbes, T., Linker, J., Chen, J., et al. 2006, Space Science Reviews,
123, 251

Gandhi, H., Patel, R., Pant, V., et al. 2024, Space Weather, 22,
e2023SW003805

Georgoulis, M. K., & Rust, D. M. 2007, The Astrophysical Journal,
661, L109

Gopalswamy, N. 2006, Journal of Astrophysics and Astronomy, 27,
243

—. 2009, Proceedings of the International Astronomical Union, 5,
326

Gopalswamy, N., Akiyama, S., Yashiro, S., Michalek, G., &
Lepping, R. 2008, Journal of Atmospheric and Solar-Terrestrial
Physics, 70, 245

Gopalswamy, N., Yashiro, S., & Akiyama, S. 2007, Journal of
Geophysical Research: Space Physics, 112

Guo, J., Zhang, H., & Chumak, O. 2007, Astronomy &
Astrophysics, 462, 1121

Guo, J., Zhang, H., Chumak, O. V., & Liu, Y. 2006, Solar Physics,
237, 25

Guo, Y., Ding, M. D., Schmieder, B., et al. 2010, ApJL, 725, L38,
doi: 10.1088/2041-8205/725/1/L38

Hale, G. E., Ellerman, F., Nicholson, S. B., & Joy, A. H. 1919,
Astrophysical Journal, vol. 49, p. 153, 49, 153

http://doi.org/10.1007/s11207-014-0529-3
http://doi.org/10.3847/1538-4365/ac1f1d
http://doi.org/10.1088/2041-8205/725/1/L38


13

Harshita. 2024, Harshu939/sc24 3d 2d cmedataset: A combined
catalog of 3D and 2D CME Kinematics, v1.1.1, Zenodo,
doi: 10.5281/zenodo.10624334

Hundhausen, A. 1999, in The many faces of the Sun: A summary of
the results from NASA’s Solar maximum mission (Springer),
143–200

Jain, R., Aggarwal, M., & Kulkarni, P. 2010, Research in Astronomy
and Astrophysics, 10, 473

James, A. W., Green, L. M., Barnes, G., van Driel-Gesztelyi, L., &
Williams, D. R. 2024, The Astrophysical Journal, 975, 52,
doi: 10.3847/1538-4357/ad77a0

James, A. W., Williams, D. R., & O’Kane, J. 2022, Astronomy &
Astrophysics, 665, A37

Kaiser, M. L., Kucera, T., Davila, J., et al. 2008, Space Science
Reviews, 136, 5

Kim, R.-S., Park, S.-H., Jang, S., Cho, K.-S., & Lee, B. 2017, Solar
Physics, 292, 1

Kliem, B., & Török, T. 2006, Physical Review Letters, 96, 255002
Kontogiannis, I., Georgoulis, M. K., Guerra, J. A., Park, S.-H., &

Bloomfield, D. S. 2019, Solar Physics, 294, 130
Leka, K. D., Barnes, G., & Wagner, E. L. 2017, SoPh, 292, 36,

doi: 10.1007/s11207-017-1057-8
Liu, R. 2020, Research in Astronomy and Astrophysics, 20, 165
Liu, Y. 2007, Advances in Space Research, 39, 1767
Liu, Y. 2008, ApJL, 679, L151, doi: 10.1086/589282
Luo, R., & Liu, R. 2022, arXiv e-prints, Accepted to ApJ,

arXiv:2203.03913. https://arxiv.org/abs/2203.03913
MacQueen, R., & Fisher, R. 1983, Solar Physics, 89, 89
Majumdar, S., Pant, V., Patel, R., & Banerjee, D. 2020, The

Astrophysical Journal, 899, 6
Majumdar, S., Patel, R., & Pant, V. 2022, The Astrophysical Journal,

929, 11
Moon, Y.-J., Choe, G., Wang, H., et al. 2002, The Astrophysical

Journal, 581, 694
Müller, D., Fleck, B., Dimitoglou, G., et al. 2009, Computing in

Science & Engineering, 11, 38
Müller, D., Nicula, B., Felix, S., et al. 2017, Astronomy &

Astrophysics, 606, A10
Pant, V., Majumdar, S., Patel, R., et al. 2021, Frontiers in Astronomy

and Space Sciences, 8, 634358
Park, S.-H., Cho, K.-S., Bong, S.-C., et al. 2012, The Astrophysical

Journal, 750, 48
Patsourakos, S., Vourlidas, A., & Kliem, B. 2010, Astronomy &

Astrophysics, 522, A100
Pulkkinen, T. 2007, Living Reviews in Solar Physics, 4, 1

Qiu, J., & Yurchyshyn, V. B. 2005, The Astrophysical Journal, 634,
L121

Richardson, I. G., & Cane, H. V. 2010, Solar Physics, 264, 189
Salas Matamoros, C., & Klein, K.-L. 2014, 40th COSPAR Scientific

Assembly, 40, D2

Sammis, I., Tang, F., & Zirin, H. 2000, The Astrophysical Journal,
540, 583

Schmieder, B., Aulanier, G., & Vršnak, B. 2015, Solar physics, 290,
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